Step of Proof: length_of_not_nil
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
length
of
not
nil
:
A
:Type,
as
:(
A
List). (
(
as
= []))
(||
as
||
1 )
latex
by ((((((RepD)
CollapseTHENM (OnVar `as' D))
)
CollapseTHENM (Reduce 0))
)
CollapseTHEN (
C
(Auto_aux (first_nat 1:n) ((first_nat 2:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1.
A
: Type
C1:
2.
([] = [])
C1:
0
1
C
2
:
C2:
1.
A
: Type
C2:
2.
u
:
A
C2:
3.
v
:
A
List
C2:
4.
([
u
/
v
] = [])
C2:
(||
v
||+1)
1
C
3
:
C3:
1.
A
: Type
C3:
2.
u
:
A
C3:
3.
v
:
A
List
C3:
4. (||
v
||+1)
1
C3:
([
u
/
v
] = [])
C
.
Definitions
False
,
,
t
T
,
P
Q
,
P
Q
,
P
&
Q
,
Y
,
||
as
||
,
A
,
P
Q
,
x
:
A
.
B
(
x
)
,
A
B
,
i
j
Lemmas
length
wf1
,
ge
wf
,
not
wf
origin